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Abstract Analysis of the Serravallian calcareous nannofossils from eight Niger Delta deep offshore wells shows,
for the first time, evidence of the Middle Miocene carbonate crash from the Gulf of Guinea. These nannofossil-poor
sediments provide very low biostratigraphic resolution and preclude a refined biozonation for the interval in this re-
gion. Evidence of such poor preservation of calcium carbonate microfossils (mainly foraminifera and nannofossils) in
the Middle Miocene is widespread in the eastern equatorial Pacific Ocean, where the term ‘carbonate crash’ was first
used. The carbonate crash has also been identified from the Caribbean, Atlantic and Indian oceans. With the recogni-
tion of the event in the Gulf of Guinea, it could be said to be a global phenomenon. The carbonate crash, as observed
in the studied Niger Delta wells, spans the interval of nannofossil zones NN5 to NN8. The event has been documented
between zones NN5 and NN10 in other regions of the world. The overlap in time and the nature of the crash in the
Gulf of Guinea is comparable with reports from other parts of the world, suggesting a common cause as responsible

for the crash.
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1. Introduction

Records of poor preservation of calcareous microfossils,
a sharp reduction in calcium carbonate weight-percent
and lower calcium carbonate mass accumulation rates
(MARs) are well documented from many oceans around
the world. These phenomena, spanning the Middle to Late
Miocene, are more pronounced in the eastern and central
equatorial Pacific, Indian, Caribbean and Atlantic Oceans
(Lyle et al., 1995; Peterson et al., 1992; Sigurdsson et al.,
2000 and King et al., 1997, respectively). Vincent (1981)
showed unusually low carbonate weight-percent at Deep
Sea Drilling Project Site 310 on the Hess Rise (north cen-
tral Pacific). He referred to the interval as the mid-Epoch
10 event, which was correlated with the Chron 4a interval
spanning 9.6 to 9.2 Ma, using the geomagnetic polarity
time-scale of Cande and Kent (1992). The term ‘carbon-
ate crash’ was employed by Lyle et al. (1995) to represent
the interval between 11.2 and 8.6 Ma in Ocean Drilling
Program (ODP) Leg 138 and other sites in the eastern
equatorial Pacific, characterised by lower calcium carbon-
ate MARs. Identification of a Caribbean carbonate crash
was a significant finding at ODP Leg 165 in the Caribbean
Sea (Sigurdsson et al., 2000). They reported a reduction
of calcium carbonate weight-percent, lower calcium car-
bonate MARSs and poorer preservation of calcium carbon-
ate microfossils in the Middle to Late Miocene (12 — 10
Ma) in the Caribbean. This was noticeable at three sites:
in the Yucatan Basin, the Colombian Basin and the Pedro
Channel. Roth ef al. (2000) further investigated the Carib-
bean carbonate crash of Sigurdsson et al. (2000). They
studied the nature, extent and timing of intense fluctua-
tions in the burial of carbonate sediments, to gain a better
understanding of the changes in global thermohaline cir-
culation and the establishment of the modern global ocean
conveyor belt. They concluded that tectonic activity on
the northern Nicaraguan Rise in the early Middle Mio-
cene led to the establishment of a connection between the
southern and northern Caribbean basins, by opening two

main new seaways: the Pedro Channel and the Walton Ba-
sin. Muza (2000) studied nannofossils from ODP Leg 170
sites, collected from a transect across the Middle Ameri-
can Trench off the Nicoya Peninsula, eastern equatorial
Pacific Ocean. He observed that, within the Miocene, at
Sites 1039 and 1040, nannofossil zones NN10-NN6 of
Martini (1971) were difficult to differentiate due to low
sedimentation rates, thus providing only a low-resolution
biostratigraphy.

Difficulties are often encountered in the biostratigraph-
ic interpretation of the Middle Miocene using nannofos-
sils in the Niger Delta. These difficulties have, however,
not been viewed to have a basin-wide or regional signif-
icance, as oil wells are often studied individually, with
little effort applied to correlating across or between fields.
The findings presented in this paper emanate from a work
primarily designed to refine the biozonation schemes of
Martini (1971) and Okada and Bukry (1980), which are
the basis for the calcareous nannofossil biostratigraphic
work in the region. There occurs a consistent impover-
ishment of assemblages to outright barrenness of samples
from the basal part of NNO to the lower part of NNS in all
the wells studied in the offshore Niger Delta basin. Some-
times, the top of Sphenolithus heteromorphus (NN5 zonal
marker) is not seen while the NN7 zonal marker, Dis-
coaster kugleri is not seen at all in most wells. Discoaster
exilis distribution in the studied wells is such that it occurs
below zone CN5 (NN6 & NN7), where it can be used
as zonal marker in the Okada and Bukry (1980) zonation
scheme. These observations aroused our curiosity to ex-
amine this interval in other parts of the world. Comparison
has revealed that the interval is a known problem in most
oceans, where it has been documented from the evidence
of poor preservation of carbonate microfossils, reduction
in calcium carbonate weight-percent and lower calcium
carbonate MARs (Vincent 1981; Lyle et al., 1995; Sig-
urdson et al., 1997; Roth et al., 2000; Diester-Haass et al.,
2004; Krammer et al., 2006; Jiang et al.,2007). Here, we
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Figure 1: Niger Delta Map showing the approximate location of the
study area

present our observations of poor nannofossil preservation
in the offshore Niger Delta and relate this to the carbonate
crash reported from other basins around the world.

2. Materials and Methods

Over 1300 ditch-cuttings samples from eight wells from
the offshore deep-water Niger Delta were investigated.
The eight wells represent a transect through the marked
area in Figure 1 and are code-named DPW-1 to DPW-8
for proprietary reasons. The samples are predominantly
shale, with occasional sands. Suspension slides were pre-
pared for all samples, using standard preparation meth-
ods. About 5 grams of sample was cleaned with detergent
and dispersed in distilled water and the suspension flood-
ed onto a 22 x 40mm glass cover slip and dried on a hot-
plate at about 50 — 60°C. The coverslip was then mounted
on a labelled glass slide using Norland optical adhesive
mounting medium. Slides were examined with an Olym-
pus Photomicroscope at 1000x and 1500x magnifications
under cross-polarised and bright field illumination.

For each slide, all nannofossils encountered in eight
long traverses were identified, to species level, where
possible. The relative abundance and species richness of
the assemblages, along with a description of preservation,
degree of dissolution and sample appearance in the light
microscope, were recorded on an analysis (logging) sheet
for each sample.

3. Results
The nannofossil distribution in the eight wells is shown in
Figures 2 — 9. The studied samples are characterised, in
most parts, by abundant and diverse nannofossil assem-
blages permitting easy application of the Martini (1971)
and Okada and Bukry (1980) biozonation schemes. The
Middle Miocene section of the studied wells, however,
was found to be poor in nannofossils.

Significant nannofossil datums have been assigned
absolute ages as summarized in Gradstein ez al. (2004).

abundant and diverse nanno-
fossils were recorded in NN2 through NN4. Nannofossil
abundance gradually reduces from NNS5 to the basal part
of NN7, and then pick up from NN10, where a highly
abundant and diverse nannofossil assemblage was record-
ed through NN11. A sample mix-up attributed to caving
was noticed below NN11. The biostratigraphy is therefore
based on nannofossil datum tops only and abundances re-
corded below this interval are believed to be higher than
the in situ abundances, thereby making the expected im-
proverished nannofossil assemblages less obvious. NN7,
NNS8, NN9 and NN10 cannot be differentiated due to the
absence of the characteristic zonal markers — Discoaster
kugleri, Catinaster coalitus and Discoaster hamatus. The
interval below NN7 cannot be subdivided due to poor
nannofossil distribution and this is labelled as ‘indeter-
minate’ down to the observed top of Sphenolithus hetero-
morphus marking the top of NN5. Even though NN5 was
interpreted, fossil abundance and species richness remain
low within the interval.

3.2. DPW-2

Well DPW-2 ranges from the Middle Miocene (NN7) to
Lower Pliocene (NN14). Fossil preservation in the basal
part of the well, below NN8 (Middle Miocene) and abun-
dances are consequently low. A gradual increase in abun-
dance was recorded from NN8 through NN10, while high
abundance and diversity nannofloras prevail from NN11
through NN14. A sharp decrease in abundance and diver-
sity and barrenness was recorded in many samples in the
upper part of the analysed section of the well (Figure 3).

3.3. DPW-3

Well DPW-3 ranges from the Lower Miocene (NN4) to
Upper Miocene (NN11). Zone NN4 is characterised by
common occurrences of nannofossils, which then sharply
reduces at the lowest part of NN5 through NN7. However,
a slight abundance increase, dominated by some species
of Reticulofenestra, was observed just within the inter-
val of low nannofossil abundance (Figure 4). The assem-
blages contain no index species to allow biozones to be
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Figure 2:

Calcareous nannofossil distribution in DPW-1 well
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Figure 3: Calcareous nannofossil distribution in DPW-2 well

applied to the interval. A gradual increase was again no-
ticed from NNB8, leading to a highly abundant and diverse
assemblage from NN9 through NN11.

3.4. DPW-4

Well DPW-4 displayed a pattern of distribution similar
to DPW-3, with moderate nannofloral abundances in the
basal part of the well (NN4). The paucity of nannofossils
in the interval above zone NN4 precludes the application
of zones NN5, NN6 and NN7. Nannofossil abundances
increased gradually from NN8, and above this, abundanc-
es were high until the topmost part of the section of the
well, in the Lower Pliocene (NN13) (Figure 5).

3.5. DPW-5

The nannofossil abundance patterns are similar in well
DPW-5 to DPW-4. DPW-5 penetrated the Lower Mio-
cene (NN4) to Lower Pliocene (NN13). Most parts of
NNS5 and the entire zones NN6 and NN7 fall within the
interval of low nannofossil recovery, as they cannot be
assigned. Nannofossil abundances increased substantially
from NN8 through NN13 (Figure 6).

3.6. DPW-6

Well DPW-6 penetrated the Lower Miocene (NN1) to
Lower Pliocene (NN12) in which highly abundant and
diverse nannofloras were observed in most parts of the
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Figure 4: Calcareous nannofossil distribution in DPW-3 well
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Figure 5: Calcareous nannofossil distribution in DPW-4 well
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Figure 6: Calcareous nannofossil distribution in DPW-5 well
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Figure 7: Calcareous nannofossil distribution in DPW-6 well

well. However, NN7 — NN10 were
not distinguishable in the well. This
is believed to be the result of an
unconformity or the presence of a
diapiric structure that resulted in the
condensation of zones NN3 - NN6.
The usual paucity of nannofossils
characterising NN7 and NN8 is vis-
ible above NN6 in the well section
(Figure 7).

3.7. DPW-7 and DPW-8
Wells DPW-7 and DPW-8 both pen-
etrated the Lower to Upper Mio-
cene, with moderate nannofossil
distribution only in the Lower to
Middle Miocene (NN4 to NN5) and
the Upper Miocene (NNI11). The
poor nannofossil abundances above
NN4 allow the determination of
NNS5 and NN8, while NN6 and NN7
were not distinguishable, due to the
interval of poor nannofossil recov-
ery (Figures 8 and 9).

4. Discussion

Integration of the results from the
eight wells studied (Figure 10) re-
veals a sharp decrease in nannofos-
sil abundance and diversity from the
basal part of NN9 downwards, such
that the NN9/NN8 zonal boundary
becomes difficult to determine. From
the base occurrence of Discoaster
hamatus (10.55 Ma: Gradstein et
al., 2004) in NNO9, discoasters are
very rare or not represented at all, in
the assemblages, until the basal part
of NN5 (DPW-4, DPW-6 and DPW-
8) or topmost part of NN4 (DPW-1,
DPW-3, and DPW-7) where a few
occurrences of Discoaster deflan-
drei were recorded. Well DPW-2 did
not penetrate below NN7, while a
few occurrences of Discoaster san-
miguelensis were observed in NN6
in DPW-5. In general, discoasters
are abundant in NN1 to NN4 and
dwindled rapidly in abundance and
diversity in NNS, with a near-ab-
sence in NN6 to NN8, and a grad-
ual reappearance in the basal part of
NNO. They then increase rapidly in
abundance and diversity from the
upper part of NN9 through NN13
in the wells studied. The sparse nan-
nofloras from the base occurrence of
Discoaster hamatus to the top oc-
currence of Helicosphaera amplia-
perta are dominated by Reticulofe-
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Figure 8: Calcareous nannofossil distribution in DPW-7 well

nestra spp., Coccolithus pelagicus, Helicosphaera carteri
and Calcidiscus leptoporous. NN6 and NN7 cannot be
differentiated in seven of the wells studied, due to the ab-
sence of the zonal marker — Discoaster kugleri, and the
generally low abundance nannofloras within this interval.
The reticulofenestrids, represented by Reticulofenestra
pseudoumbilicus, R. haqii, R. minutula and R. minuta,
dominate assemblages in some horizons within the inter-
val covered by the crash, and account for about 80% of
the total nannofossil species richness.

The decrease in calcareous nannofossil abundance and
species richness in the Middle Miocene, as observed in
this study, has been reported from several oceans. This
has been referred to as the ‘carbonate crash’ by Lyle et al.
(1995) and the term has been used by other authors who
have made similar observations of Middle Miocene nan-
nofloras (Peterson et al., 1992; King et al., 1997; Sigurds-
son et al., 2000 and Muza, 2000). It is clear that paucity of
nannofloras commenced about the same time (~8.6 Ma)

and ended at the same time (~15.4Ma) in the eight wells
studied strongly suggesting a carbonate crash affecting
the entire Niger Delta. This constitutes the first report of
the crash in the Gulf of Guinea region. Nannofossil data
from the studied wells show relatively high nannofloral
abundance and diversity between zones NN1 and NN4
and NN9 to NN13 while relatively low abundance and
diversity or barrenness is observed between zones NNS5
and NN8. Muza (2000) reported difficulties in assigning
zones NN6 to NN 10 (13.2 — 8.6 Ma) due to low nannofos-
sil abundances in the Middle American Trench, Nicoya
Peninsula, Costa Rica. The unresolved zonal range indi-
cate a duration of up to 4.6 Myr. Vincent (1981) reported
the crash from the north central Pacific which he claimed,
lasted between 9.6 — 9.2 Ma (upper NN9, ~0.4 Myr). In
the eastern equatorial Pacific, the crash was observed be-
tween 11.2 — 8.6 Ma (NN8 — NN11) indicating the dura-
tion of 2.6 Myr as reported by Lyle et al. (1995). Sig-
urdsson et al. (2000) reported that the crash lasted 2 Myr
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Figure 9: Calcareous nannofossil distribution in DPW-8 well

in the Caribbean between 12 — 10Ma (NN7 — NN9). The
interval lasted 3.5 million years in the western equatorial
Atlantic between 14.0 — 11.5 Ma as reported by King er
al., (1997). No age constraint can be applied to this work
based on the scope of our study, but we can extrapolate
that the poor nannofossil distribution observed in the Mid-
dle Miocene NN5 — NN8 zones in the Niger Delta wells
of the Gulf of Guinea areas has a link with the ‘carbonate
crash’ recorded about the same age in different parts of the
world. Although, we have different lengths of time from
the different oceanic locations, this is believed to be due
to several factors operating in these areas. Putting an age

constraint and making a comparison will mean that the
same relative time scale was used by all the authors which
probably is not the case. The nannofossil datum preced-
ing the event, in the earliest Middle Miocene (Langhian)
is the top of Helicosphaera ampliaperta (14.91 Ma) while
the datum postdating it is the base of Discoaster hamatus
(10.55 Ma — ages based on Grandstein et al., 2004). This
shows that the upper Langhian and the entire Serravalian
age were encompassed by the crash and that the age is
between 14.91 and 10.55 Ma and the extent of the crash is
4.36 Myr. There exists a slight variance with the observa-
tion of Muza (2000) from the Middle American Trench,
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the ‘carbonate crash’ could be concluded to be
a global phenomenon. Several possible causes
have been investigated and suggested as re-
sponsible for the crash in the different regions.
This interval has been related to various pal-

aeogeographic and palaeoceanographic events,
which were controlled by factors such as tec-
tonism, oceanic currents, changing sea level,
water chemical composition, shoaling of the
lysocline and climatic conditions in the regions
where the ‘crash’ has been reported. Lyle et al.
(1995) ascribed the major changes in carbon-

ate sedimentation the Middle - Late Miocene
boundary in the eastern Equatorial Pacific to
dissolution. The interval was interpreted by the
authors as a 1200m shoaling of the lysocline.
King et al. (1997) ascribed the carbonate crash
of the western tropical Atlantic to a long term

shoaling of the lysocline between 14.0 and
11.5 Ma, followed by a lysocline deepening at
10.5 Ma. Roth et al. (2000) corroborated the
JTI[|] idea of dissolution in their work on the Carib-
bean carbonate crash. However, Diester-Haas
et al. (2004) suggested an increase in the deliv-
ery of lithogenic matter from the Oranje River
as principal cause of the ‘carbonate crash’ off
southwest Africa, since no clear evidence for
carbonate dissolution was found. Jiang et al.
(2007), from their analysis of carbon and oxy-
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Figure 10: Stratigraphic distribution of nannofossils showing the areas covered by the

crash (synthesized from DPW-1 to DPW8 wells).

(Leg 206) in the Guatemala Basin, suggested
that surface-circulation-induced infertility was
the cause of the late/middle Miocene ‘carbon-

ate crash’. Krammer et al. (2006) also as-
cribed the diminished numbers of calcareous
nannofossils between 9.6 to 9.0 Ma at ODP site

1085 (eastern South Atlantic, off Namibia) to
weakened nannofossil productivity.

As observed earlier by Roth er al. (2000),
the comparable nature and partially overlap-
ping timing of the carbonate reductions in the
Pacific, Caribbean and Atlantic suggest a com-
mon cause associated with changing oceanic
circulation. It is therefore assumed that, what-
ever cause has been responsible for the crash
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Figure 11: Duration of the carbonate crash in different regions

as zones NN10 and NN9 are well represented in almost
all the wells studied in the Niger Delta, indicating that a
return to ‘normal’ conditions in the Gulf of Guinea oc-
curred earlier than in the Middle American trench. From
the foregoing, it can be concluded that, whatever cause
was responsible for the crash it started earlier, lasted a
longer period and stopped earlier in the Gulf of Guinea
than in most other places (Figure 11).

With the recognition of the crash in the Gulf of Guin-
ea, in addition to the reports from other oceanic locations,

in these regions, it is most likely to extend to
the Gulf of Guinea region. The actual cause in this region
being beyond the scope of this research has been left for
detailed study in a future research project.

5. Conclusions

A dearth of calcareous nannofossils has been observed in
the Middle Miocene Niger Delta deep-water sequences.
A comparison of this observation with other regions of
the world suggests that the ‘carbonate crash’ of Lyle et
al. (1995) is also preserved in the Gulf of Guinea area.
The interval spanned by the crash, as observed from the
affected nannofossil zones (NN5 — NN&8), indicate that the
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interval of the crash commenced and ended earlier in the
Gulf of Guinea region than in the eastern equatorial Pacific
where it was first reported. However, there exists an over-
lap in the timing and nature of the crash around the world,
which suggests a common cause, as initially suggested by
Roth et al. (2000). Suggested causes for the crash from
other regions include, low nannoplankton productivity,
thought to be due to changing climatic conditions and nu-
trient depletion during the Serravallian period, carbonate
dissolution and shoaling of the lysocline. Further inves-
tigation evidence of potential causes of the crash in the
Gulf of Guinea area is reserved for future research and will
involve study of agglutinated and calcareous foraminifera
in tandem with quantitative nannoplankton data.
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